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Abstract— Reactive planning enables the robots to deal with
dynamic events in uncertain environments. However, existing
methods heavily rely on the predefined hard-coded robot
behaviors, e.g, a pre-coded temporal logic formula that specifies
how robot should react. Little attention has been paid for
autonomous generation of reactive tasks specifications during
the runtime. As a first attempt towards this goal, this work
develops a real-time decision-making and motion planning
framework. It allows the robot to follow a global task planned
offline while taking proactive decisions and generating temporal
logic specifications for local reactive tasks when encountering
dynamic events. Specifically, inspired by the causal knowledge
graph, a proposition graph is developed, based on which the
decision module encode the environment and the task as the
Boolean logic and linear temporal logic (LTL), respectively.
Based on the established proposition graph and perceived
environment, the agent can autonomously generate an LTL
formula to realize the local temporary task. A joint sampling
algorithm is then developed, in which the automaton states of
local and global task are jointly considered to generate a feasible
planning that satisfies both global and local tasks. Experiments
demonstrate the effectiveness of the proposed decision-making
and motion planning.

I. INTRODUCTION

Active inference, a capability of reasoning and planning,
is crucial for online robot control, especially when oper-
ating in dynamic environments. To deal with unexpected
and dynamic events, reactive planning with temporal logic
specifications has shown promising results [1], [2]. Neverthe-
less, these approaches heavily rely on predefined hard-coded
robot behaviors, e.g, a pre-coded temporal logic formula that
specifies how robot should react [3]–[5]. Little attention has
been paid to active inference to enable intelligent reasoning
and decision-making during the runtime. In practice, the
robot is often desired to take proactive decisions at run-time
for local reactive tasks without violating global tasks.

As a motivating example, a quadruped robot is assigned a
global security task of repeatedly checking areas of interest,
as shown in in Fig. 1. If a suspicious object is found, a local
temporary task can be triggered, which requires the robot to
deliver the suspicious object to area 2. In terms of temporal
logic specifications, the global and local tasks can be written
as ΦG = GFap1 ∧ GFap2 and ΦL = F (ap3 ∧X(Fap2)),
respectively. In conventional approaches, these tasks have to
be hard-coded in advance (i.e., specify exactly what actions
should be taken if which object is detected). This can be te-
dious and challenging, as it is hard to enumerate all potential
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Fig. 1. (a) The robot performs the global task of visiting area 1 (ap1)
and area 2 (ap2) in sequence. (b) The robot detects a suspicious backpack
(ap3) and delivers it to area 2 (ap2).

suspicious objects and the corresponding actions. It is highly
desired that the robot is only given the order of "delivering
any suspicious objects to area 2" and the robot can infer
suspicious objects and generate the corresponding temporal
logic formula that specifies the local task on its own using
active inference based on the observed objects and common
sense. However, few methods in literature can identify the
reactive task expressed by temporal logic autonomously and
proactively determine which should be done subsequently.
The lack of proactive decision making significantly limits
their applicability and flexibility, especially in dynamic en-
vironments. Hence, this work is particularly motivated to
proactive determination and generation of local reactive tasks
using active inference.

Related Work. Due to its rich expressivity and resem-
blance to natural language, linear temporal logic (LTL) has
been widely used to describe complex robotic tasks and
specify robot behaviors [6]–[9]. However, LTL formulas
in most applications are still required to be handcrafted
in advance or generated by large number of trajectories
[10], [11]. To relax this limitation, a knowledge base is
often preferred. The causal knowledge graph is employed to
facilitate decision making [12]–[14], which enables agents
to determine subsequent actions according to the observed
environment and task requirement. However, complex tasks,
such as LTL tasks, are usually too complex to be represented
by independent nodes and thus the causal knowledge graph
is hard to be directly applied.

Furthermore, reactive planning in the complex environ-
ment is also a challenge. Recent reactive planning generally
focuses on dynamic environment [15], independent sub-task,
e.g. local temporary task [16], [17], or infeasible sub-tasks
[18]. When encountering a local temporary task during the
execution of a global task, it is necessary to know the
progress of the current task via automaton-based approaches
[4], [19]. Among them, sampling-based methods [3], [20]
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show great potentials in terms of comprehensive applicability
and faster solution time, which makes such methods good
candidate for complex tasks in real-time [21]. However, when
the local task is coupled with the global task, in addition
to the progress of the global task, we should also consider
the conflict between the local and global tasks. Attempts to
address this issue include the multi-task transition planning
method in [22] and the method of combining multiple tasks
in [23].

To address the above challenges, this work develops a real-
time decision-making and motion planning framework that
allows the robot to follow a global task planned offline while
taking proactive decisions and generating temporal logic
specifications for local reactive tasks when encountering
dynamic events. To enable proactive decision making for
local temporary tasks, inspired by the causal knowledge
graph [24], a novel proposition graph is developed in this
work to describe the relationships of sub-tasks. Specifically,
the environment information and the task information are
described by Boolean logic and temporal logic based on
the propositional graph. Based on the automaton sampling
method in [3], a joint sampling algorithm is then developed.
Through the sampling of atomic propositions, the automaton
states of local and global task are jointly considered to
generate a feasible planning that satisfies both global and
local tasks.

The main contributions are summarized as follows. To the
best of our knowledge, this is one of the first attempts to
leverage the proposition graph to establish the temporal and
logical representation between sensory input (i.e., observed
objects and environment) and desired tasks. Based on the
established proposition graph and perceived environment via
images or point clouds, the agent can autonomously generate
an LTL formula to realize the local temporary task, rather
than using a pre-coded LTL formula as in many existing
works. To deal with the multi-task reactive planning, the joint
sampling planner is developed, in which the automaton states
of local and global task are jointly considered to generate a
feasible planning that satisfies both global and local tasks.
Experiments demonstrate the effectiveness of the proposed
decision-making and motion planning.

II. PRELIMINARIES

LTL is a formal language defined over a set of atomic
propositions AP with Boolean and temporal operators. The
syntax of LTL is defined as:

ϕ := true|ap|ϕ1 ∧ ϕ2|¬ϕ1|Xϕ|ϕ1Uϕ2

where ap ∈ AP is an atomic proposition, true, ¬ (negation),
and ∧ (conjunction) are propositional logic operators, and
X (next) and U (until) are temporal operators. Other propo-
sitional logic operators such as false, ∨ (disjunction), and
temporal operators such as G (always) and F (eventually)
can also be defined [25].

The word π = π0π1 . . . is an infinite sequence where
πi ∈ 2AP , ∀i ∈ Z≥0, with 2AP representing the power set

of AP . Given a word π, denote by π [j . . .] = πjπj+1 . . .
and π [. . . j] = π0 . . . πj .

More details about LTL syntax, semantics, and model
checking are referred to [25]. An LTL formula can be
converted to a Non-deterministic Büchi Automaton (NBA).

Definition 1. An NBA is a tuple B = {S, S0,Σ, δ, FS},
where S is a finite set of states, S0 ⊆ S is the set of initial
states, Σ = 2AP is the finite alphabet, δ ⊆ S ×Σ×S is the
state transition, and FS ⊆ S is the set of accepting states.

Let ∆ : S×S → 2Σ denote the set of atomic propositions
that enables state transitions in NBA, i.e., ∀π ∈ ∆(s, s′),
there exists (s, π, s′) ∈ δ. Then, the NBA can also be defined
as B = {S, S0,Σ,∆, FS}. A valid run s = s0s1s2 . . . of Bϕ

generated by the word π with πi ∈ ∆(si−1, si), ∀i ∈ N≥1,
is called accepting, if s intersects with FS infinite often. An
LTL formula can be translated to an NBA by the tool [26].
In this paper, NBA will be used to track the progress of the
satisfaction of LTL tasks.

III. PROBLEM FORMULATION

Consider a bounded workspace M ⊂ R2, where a position
p is denoted as p = (x, y) ∈ M . Suppose M consists of a
number of non-overlapped areas of interest MI and a free
space MU , i.e., M = MI ∪ MU ,MI ∩ MU = ∅. Let AP
represent the set of tasks that can be performed in M . The
label function L : M → AP maps p to the corresponding
atomic proposition ap ∈ AP , i.e., L(p) = ap. We further
denote by LM : AP → M to indicate the position p where
an atomic proposition ap ∈ AP is executable. The robot
operating in M is defined as a tuple R = {p0, p, v,Ω}, where
p0 is the initial position, p is the current position, v is the
maximum linear velocity, and Ω is the robot observation.

Definition 2. The robot observation is a tuple Ω =
{O,OM , OP }, where O = {o1, o2, . . . , ono

} is the set of
observed objects with oi ∈ O representing the ith object
and no representing the total number of observed objects,
OM : O → M maps an object to its position in M , and
OP : O → AP maps an object to its corresponding atomic
proposition.

Consider a global LTL task ΦG and the corresponding
NBA is denoted by BG = (SG, SG0,ΣG, ∆G, FG).

Definition 3. (Global Plan): The global plan Π correspond-
ing to ΦG is defined as Π = (sG,p,π), where sG =
sG0 s

G
1 s

G
2 . . . is the sequence of states of BG, p = p0p1p2 . . .

is the sequence of execution positions with p0 indicating the
initial position of the robot, and π = π0π1π2 . . . is sequence
of sub-tasks with π0 indicating the empty task.

In Def. 3, sGi ∈ SG indicates the state of BG after the
completion of πi, i.e., πi ∈ ∆(sGi−1, s

G
i ), and pi ∈ M indi-

cates the task execution location of πi, i.e., pi = LM(πi).
By defining Πi = (sGi , pi, πi), the global planning can be
written as Π = Π0Π1Π2 . . .. We denote by Π |= ΦG if
the planning Π satisfies the LTL formula ΦG. Based on the
prefix-suffix structure, the planning Π can be further written
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in the form of Π = ΠpreΠtraΠsufΠsuf ..., where Πpre and
Πsuf are finite prefix and finite cyclic suffix, respectively.
As the end state of prefix and start state of suffix may be
different, the finite transition Πtra is developed to connect
them [27]. Since ΠpreΠtraΠsuf |= Φ also indicates that
ΠpreΠtraΠsufΠsuf ... |= Φ, we only need to determine
Πpre, Πtra, and Πsuf in Π.

When performing the global task ΦG, the robot may
encounter local temporary task based on the observation Ω.
Such tasks are considered as local tasks ΦL in this work. The
local tasks ΦL are specified by co-safe LTL formulas [28]
to represent local temporary tasks which can be satisfied by
finite-length prefix words. The co-safe LTL can be converted
to a non-deterministic finite automata (NFA) [29], which is
similar with the NBA.

Definition 4. (Local Plan): Given an NFA BL =
(SL, SL0,ΣL, ∆L, FL) corresponding to ΦL, the local plan
is defined as Πtem = (sG, sL,p,π), where sG, p, and π
are the same as the global plan Π and sL = sL0 s

L
1 s

L
2 . . . is

the sequence of states of BL.

Let APG and APL denote the atomic propositions of ΦG

and ΦL, respectively. Since local tasks should also respect the
global tasks, we denote by Πtem |= (ΦG,ΦL), if ∀sLi ∈ sL,
it holds that πi ∈ ∆L(s

L
i−1, s

L
i ) or πi /∈ APL, and ∀sGi ∈ sG,

it holds that πi ∈ ∆G(s
G
i−1, s

G
i ) or πi /∈ APG.

In a partially unknown environment, the agent has to
operate based on its local observation of the environment.
We hope that the agent can generate local task formula based
on active inference of the observed environment, and obtain
a plan that satisfies both local and global tasks. Then, the
problem of autonomous reactive planning can be defined as
follows.

Problem 1. Given the map M and the global task ΦG, how
to obtain the enforceable local tasks and their specifications
ΦL according to the observation Ω. Then, generate the new
planning scheme Πtem, Πpre, Πtra, Πsuf , which satisfy
Πtem |= (ΦG,ΦL) and ΠpreΠtraΠsuf |= ΦG.

IV. PROPOSITION GRAPH BASED PLANNING

To enable proactive decision making, the key idea is
to generate task specifications for local tasks via active
inference based on the knowledge base and the observed
environment information Ω during runtime. The joint sam-
pling is then developed for the planning of both global and
local tasks. The overview of active inference based reactive
planning is shown in Fig. 2.

A. Proposition Graph

Causal knowledge graph has been widely used to represent
the causal relationship of entities such as ′cause′, ′effect′,
and ′state′. In [14], the causal knowledge graph is defined as
a tuple KG = {Ek, Rk, Fk}, where Ek is a set of entities,
Rk = {′cause′,′ effect′,′ state′} is a set of relationships,
and Fk is a set of facts where each fact is represented by a
tuple (eh, rk, et) ∈ Fk with eh ∈ Ek, et ∈ Ek, and rk ∈ Rk

Fig. 2. Our approach consists of the sensing module, decision module, and
the planning module. In the sensing module, the environment information
Ω, such as the location of the object and the object classification, is collected
via visual and Lidar feedback. In the decision module, the proposition
graph PG is developed as a knowledge base to indicate the relationships
between atomic propositions, and then is applied to generate the local task
specification ΦL based on Ω. Given the observed Ω, ΦL and PG, the
real-time planning via the joint sampling is developed in the task planning
module to ensure the satisfaction of both ΦG and ΦL.

representing the head entity, the tail entity, and the relation
between eh and et, respectively.

Motivated by the causal knowledge graph KG, we de-
velop a proposition graph in this work consisting of atomic
propositions with their associated attributes. The proposition
graph contains the domain knowledge and can be applied to
generate the temporal logic formula.

Definition 5. (Proposition Graph) The proposition
graph is a tuple PG = {AP,Rp, Fp}, where the
nodes represent the atomic propositions AP , Rp =
{′before′,′ after′,′ related′} represents the temporal rela-
tionship between atomic propositions, and Fp is the set of
facts where each fact is a tuple (aph, r, apt) ∈ Fp with
aph ∈ AP , apt ∈ AP , and r ∈ Rp represent the head
proposition, the tail proposition, and the relationship between
aph and apt, respectively.

For instance, if given a tuple (aph,
′ before′, apt) ∈ Fp,

then apt should be executed before aph. If given a tuple
(aph,

′ after′, apt) ∈ Fp, then apt should not be executed
before aph. If (aph,′ related′, apt) ∈ Fp, then the execution
of aph in the environment indicates that apt should also be
executed. To conveniently specify the relationship between
atomic propositions, we define three functions bf, af, re :
AP → 2AP , where bf(api) ⊆ AP indicates the set of
preceding propositions such that (api,

′ before′, apj) ∈ Fp

for all apj ∈ bf(api), af(api) ⊆ AP indicates the set
of post-propositions such that (api,

′ after′, apj) ∈ Fp for
all apj ∈ af(api), and re(api) ⊆ AP indicates the set of
related propositions such that (api,′ related′, apj) ∈ Fp for
all apj ∈ re(api). The relationships in proposition graph
can be obtained by existing causal knowledge graph [14] or
LLM [30] to avoid manual pre-definition of robot behaviors.

B. Proactive Decision-Making Module

To enable proactive decision making for reactive local
tasks, we first establish the propositional graph PG to
represent the relationship of atomic propositions in the
environment. The following example sheds light on how PG
is constructed.
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Example 1. In the right plot of Fig. 2, there are four objects
in the environment: waste, trash bin, water faucet, and home,
which correspond to four atomic propositions: picking up
the waste by ap1, throwing the waste into the trash bin by
ap2, washing hands by ap3, and going home by ap4. The
knowledge base that specifies a set of rules is defined as
follows: 1) picking up the waste before throwing it into
the trash bin; 2) washing hands after entering home; and
3) washing hands after picking up the waste; 4) executing
ap1 and ap4 near the corresponding objects; 5) picking up
the waste is related to washing hands; (6) trashing the waste
is related to picking up waste; 7) going home is related to
washing hands. The corresponding PG is then constructed
as in Fig. 2. The black, green, and blue arrows indicate the
relationship of ′related′, ′after′, and ′before′, respectively.

As outlined in Alg. 1, the decision module takes as
input the local observation Ω, and based on the the estab-
lished proposition graph PG, outputs the generated logical
representations of the sense Φin and the local task Φout.
Specifically, the Boolean logic representation of the sense
Φin and its involved propositions APin are obtained by the
observation Ω (lines 1-8). For the object o ∈ O, if there exists
corresponding atomic proposition ap satisfying Op(o) = ap,
i.e., ap is in the environment, then add ap into the set
APin and the logical representation of the environment Φin.
Besides, LM(ap) is set as the location OM (o) by the sense.
The task formula Φout can be obtained by the formula
generation function Get_Formula. Finally, Φin is returned
as a logical representation of the sense, and Φout is returned
as a logical representation of the local task to guide the task
planner.

Algorithm 1: Proactive Decision Making
Input: PG, Ω
Output: Φin, Φout

1 Initialize Φin =′ true′, APin = ∅;
2 for o in O do
3 if ∃ap ∈ AP = OP (o) then
4 Φin = Φin ∧ ap;
5 Add ap to APin;
6 LM(ap) = OM (o);
7 end
8 end
9 Initialize Φout =

′ true′;
10 Φout = Get_Formula(APin, PG,Φout);
11 Return Φin, Φout;

One ultimate goal of Alg. 1 is to autonomously generate
an LTL formula for the encountered local task based on
the observed environment. To achieve this goal, the function
Get_Formula is developed to obtain the task formula iter-
atively based on PG, which is outlined in Alg. 2. Firstly,
the sub-formula Φsub of the related propositions APr is
constructed (Lines 1-12). For api ∈ APr, if there exists
apj ∈ re(api), then we add sub-formula Fapj into Φsub, i.e.,
execute apj in the local task. Besides, if there exists temporal
order, i.e. bf(api) ̸= ∅, af(api) ̸= ∅, we add the sub-formula
′((¬api)U(apj))

′ and ′((¬apj)U(api))
′ respectively, for the

′before′ and ′after′ relationships. Then, add Φsub into
Φout as the new task formula. Secondly (Lines 14-17), get
the new related atomic propositions by the current related
propositions APr and add them into the set APnew. Finally
(Lines 18-23), if there is no ap related to the APr, then return
Φout. Otherwise, continue to get new sub-formula iteratively
according to the new set of related propositions APnew,
the proposition graph PG, and the currently generated task
formula Φout.

Algorithm 2: Get_Formula
Input: APr , PG, Φout

Output: Φout

1 Initialize Φsub =
′ true′;

2 for api in APr do
3 for apj in re(api) do
4 Φsub = Φsub +

′ ∧Fap′j ;
5 end
6 for apj in bf(api) do
7 Φsub = Φsub +

′ ∧((¬api)U(apj))
′;

8 end
9 for apj in af(api) do

10 Φsub = Φsub +
′ ∧((¬apj)U(api))

′

11 end
12 end
13 Φout = Φout +Φsub;
14 APnew = ∅;
15 for ap in APr do
16 Add re(ap) to APnew;
17 end
18 if APnew = ∅ then
19 Return Φout;
20 else
21 Φout = Get_Formula(APnew, PG,Φout);
22 Return Φout;
23 end

C. Task Planning Module

After constructing the local task, the robot is desired to
complete the local task without violating the global task. As
directly integrating the local formula into the global task will
form a new formula, the current state of global task sG can
not be reflect in the new automata converted by the new
formula. Therefore, BG should be retained and combined
with BL for joint planning. To achieve this goal, inspired
by the fast task planner [3], a joint sampling method is
developed in this work. The idea behind of the joint sampling
is to incrementally construct a joint tree T in real time and
then search over it for task planning. Specifically, the joint
tree is defined as a tuple T = (N,E,C), where N represents
the set of nodes, E represents a set of transitions, and C :
N → R+ is the cost function indicating the cost of reaching
the current node from the root n0. Each node ni ∈ N is
defined as ni = (api, s

GT
i , sLT

i ) ∈ AP × BG × BL, which
indicates the current sub-task, local and global automaton
states, respectively. A transition (ni, nj) ∈ E is feasible,
if it satisfies the local task ΦL and global task ΦG, i.e.,
it holds that apj ∈ ∆L(s

LT
i , sLT

j ) or apj /∈ APL, and,
apj ∈ ∆G(s

GT
i , sGT

j ) or apj /∈ APG. The set E captures
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feasible transitions among the nodes in N that satisfy both
local task ΦL and global task ΦG.

As outlined in Alg. 3, we first generate the NBA BG

and NFA BL corresponding to ΦG and ΦL, respectively,
and initialize the joint tree with the root N = {n0} where
sGT
0 ∈ SG is the current global task state and sLT

0 is the
initial state of local task, i.e., sLT

0 ∈ SL0. Then, the tree
T grows from {n0} by sampling the atomic propositions.
Suppose nj is sampled as the parent node and api is the next
atomic proposition to be executed. Then, if api is coupled
with the local task ΦL, we sample new local task state sLT

i

satisfying api ∈ ∆(sLT
j , sLT

i ). Otherwise, sLT
i is set as sLT

j .
The same procedure applies to the global task state sGT

i .
The pair (nj , ni) is considered as a new feasible transition
and added to E. The cost value of ni is determined by
C(ni) = C(nj) + ∥LM(api)− LM(apj)∥.

Similar to the pruning approach in [3], the function
Pruning in Alg. 3 is developed to remove redundant nodes
to improve the path search efficiency. For instance, given
a transition (nj , ni) ∈ E, if there exists a node nk ∈ N
such that (nk, ni) is also a feasible transition and satisfies
C(nk) + ∥LM(api)− LM(apk)∥ < C(ni), then we delete
(nj , ni) from E, add (nk, ni) into E instead and set C(ni)
as C(nk) + ∥LM(api) − LM(apk)∥. If there exist nodes
ni and nj satisfying api = apj , sLT

i = sLT
j , sGT

i = sGT
j ,

C(ni) ≤ C(nj), then we delete nj from N .
After constructing the tree T , we select the node nmin

that has the minimum cost among all nodes that complete
the local task and FG is reachable from its global state1. Ac-
cording to the node path from n0 to nmin, for ni in the path,
we can construct local plan tuple (sGT

i , sLT
i , LM(api), api)

and combine them as the local plan Πtem. According to the
end state of local plan, we initialize the root node for global
task and obtain the next global plan Πpre, Πtra, Πsuf though
Sampling method in [3].

Theorem 1. The joint sampling in Alg. 3 is valid, i.e., if it
finds a feasible planning scheme, it is guaranteed to satisfy
both global and local formulas.

Proof. Suppose that, given a node nj ∈ N , ni is a child node
of nj satisfying (nj , ni) ∈ E, and they are in the path from
n0 to nmin. Due to lines 7 and 12 in Alg. 3, if api ∈ APG,
there exists api ∈ ∆G(s

GT
j , sGT

i ), and if api ∈ APL, there
exists api ∈ ∆L(s

LT
j , sLT

i ). Besides, if api /∈ APG, there
exists sGT

i = sGT
j , and if api /∈ APL, there exists sLT

i =
sLT
j . As nj and ni are in the path from n0 to nmin, assume

that ni corresponds to the planning tuple Πk ∈ Πtem, and
nj corresponds to Πk−1 ∈ Πtem. Therefore, ∀sLk ∈ sL, k ∈
N+, it holds that πk ∈ ∆L(s

L
k−1, s

L
k ) or πk /∈ APL and,

∀sGk ∈ sG, k ∈ N+, it holds that πk ∈ ∆G(s
G
k−1, s

G
k ) or

πk /∈ APG. Hence, the joint sampling is valid, i.e., Πtem |=
(ΦG,ΦL).

1For an LTL task ϕ and its corresponding NBA BG, if there exist finite
sequences π = π2 . . . πn and s = s1s2 . . . sn−1sn that satisfy πi ∈
∆(si−1, si), ∀πi ∈ π, si ∈ s, sn ∈ FG and si ∈ SG, it is said FG is
reachable from s1.

Algorithm 3: Joint_Sampling
Input: ΦG, ΦL, AP
Output: Πtem, Πpre, Πtra, Πsuf

1 Convert ΦG, ΦL to BG, BL;
2 Initialize N = {n0};
3 for i = 1 : stepmax do
4 nj = Sample(N);
5 api = Sample(AP );
6 if api ∈ APL then
7 sLT

i = Sample(SL), s.t. api ∈ ∆(sLT
j , sLT

i );
8 else
9 sLT

i = sLT
j ;

10 end
11 if if api ∈ APG then
12 sGT

i = Sample(SG), s.t. api ∈ ∆(sGT
j , sGT

i );
13 else
14 sGT

i = sGT
j ;

15 end
16 ni = (api, s

GT
i , sLT

i );
17 Add (nj , ni) into E;

C(ni) = C(nj) + ∥LM(api)− LM(apj)∥;
18 Pruning(T );
19 end
20 Get nmin = (apmin, s

GT
min, s

LT
min) ∈ N , s.t. sLT

min ∈ FL,
sGT
min is reachable to FG;

21 Obtain Πtem from n0 to nmin according to E;
22 Initial root node of sampling N = {n0} = (apmin, s

GT
min);

23 [Πpre,Πtra,Πsuf ] = Sampling(ΦG);
24 Return Πtem, Πpre, Πtra, Πsuf ;

Theorem 2. The joint sampling in Alg. 3 is complete, i.e.,
if there exists a feasible planning scheme corresponding to
the global formula and the local formula, the joint sampling
is guaranteed to find it.

Proof. Suppose Πtem = (sG, sL,p,π) is a feasible local
plan. Without considering the function Pruning and given
a Πi = (sGi , s

L
i , pi, πi), if there exists a node nj =

(apj , s
GT
j , sLT

j ) such that sGi = sGT
j and sLi = sLT

j , then
according to lines 6-15 in Alg 3, there must exists a node
nk = (apk, s

GT
k , sLT

k ) that satisfies sGi+1 = sGT
k and sLi+1 =

sLT
k . If considering the function Pruning, the transitions that

induce larger cost values will be removed. Therefore, if there
does not exist a node nk in the following sample from nj ,
there must exists another node nl = (apl, s

GT
l , sLT

l ), satisfy-
ing sGi+1 = sGT

l and sLi+1 = sLT
l . As there must exists sG0 =

sGT
0 and sL0 = sLT

0 , for any Πi = (sGi , s
L
i , pi, πi) ∈ Πtem,

there exists nl = (apl, s
GT
l , sLT

l ) satisfying sGi+1 = sGT
l and

sLi+1 = sLT
l . Therefore, if there exists a feasible planning,

there must exists a node nmin = (apmin, s
GT
min, s

LT
min) such

that sLT
min ∈ FL and FG is reachable from sGT

min = sG|Πtem|.
Hence, the joint sampling is complete.

According to the function Pruning, if there exist nodes
ni and nj satisfying api = apj , sLT

i = sLT
j , sGT

i = sGT
j ,

C(ni) ≤ C(nj), then nj will be removed from N . Therefore,
it must hold that |N | ≤ |SG|×|SL|×|AP |, i.e., the maximum
number of nodes in N is |SG|× |SL|× |AP |. Therefore, the
complexity of joint sampling method is O(n3).
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D. Real-Time Planning

Using the proposition graph and the joint sampling, the
agent can realize proactive decision making for reactive local
tasks via real-time planning. As indicated in Alg. 4, we first
obtain the initial set of atomic proposition APG, the initial
planning scheme Π, and the initial trajectory P (lines 1-
3). First (line 5), the agent interacts with the environment
based on local observation Ω. In lines 6-10, the agent updates
the task plan Π based on Ω. The formula of local task
ΦL and the set of local propositions APL are inferred by
Decision module, where the involved proposition APL of
ΦL can be obtained by function Get_ap. Finally, we obtain
the new planning scheme Πtem,Πpre,Πtra,Πsuf by the plan
module, which is then added into the global plan Π. In line
11-17, the trajectory P will be updated according to Π and
the robot will navigate according to it.

Algorithm 4: Real-Time Planning
Input: PG, ΦG

Output: track P
1 APG = Get_ap(ΦG);
2 Π = Sampling(ΦG, APG);
3 Initial P by Π;
4 while 1 do
5 Ω = Get_input();
6 Φsensor,ΦL = Decision(PG,Ω);
7 APL = Get_ap(ΦL);
8 AP = APG ∪APL;
9 Πtem,Πpre,Πtra,Πsuf =

Joint_Sampling(ΦG,ΦL, AP );
10 Π = Update(Π,Πtem,Πpre,Πtra,Πsuf );
11 for i in |Π| do
12 if i > 0 then
13 Ppart = RRT(pi−1, pi);
14 Add Ppart to P ;
15 end
16 end
17 Control(P );
18 end

V. EXPERIMENT

LTL2STAR is used to convert LTL formula to Büchi
automaton [26]. Python 3.8 and Matlab 2019b are used for
experiment. The experiment video is provided2.

As shown in Fig. 3(a), the environment has four areas
of interest, which correspond to 4 atomic propositions. The
global task is ΦG = GFap1 ∧ GFap2 ∧ GFap3 ∧ GFap4.
For potential local tasks, we consider the following rules. If
detecting a chair (i.e., ap5), the robot should go to ap1. If
detecting a person (i.e. ap6), the robot should go to ap6, ap2,
and ap1, where ap1 has to be visited after ap6 and ap2 should
be visited before ap6. If detecting a backpack (i.e., ap7),
the robot should go to ap3 and ap7, where ap3 should be
visited after ap7. Then, the PG can be defined as re(ap5) =
{ap1}, re(ap6) = {ap1, ap2, ap6}, re(ap7) = {ap2, ap7},
af(ap6) = {ap1}, af(ap7) = {ap3}, bf(ap6) = {ap2}.

2https://youtu.be/ffBURKa-008

Fig. 3. The snapshots of experiments. In (a), the environment has 4 areas
of interest, which correspond to 4 atomic propositions. In (b), the agent
detects ap5 and obtains the local task ΦL = Fap1, then goes to ap1. In
(c), the agent detects ap7 and obtains the local task ΦL = Fap7∧Fap3∧
((¬ap3)Uap7), then goes to ap7 and ap2. In (d), the agent detects ap6
and obtains the local task ΦL = Fap6∧Fap2∧Fap1∧((¬ap6)Uap2)∧
((¬ap1)Uap6), then goes to ap2, ap6, ap1.

The location of ap5, ap6, ap7 are unknown a priori and can
only be detected during runtime.

The experiment result are shown in Fig. 3 (b)-(d). To
perform ΦG, the global plan is generated as ap4ap3ap2ap1.
During task operation, the agent may detect objects of
interest. If the objects are in the PG, the local task will be
triggered. For instance, as shown in Fig. 3(b), when going
to ap4, a chair is detected, which is related to the atomic
proposition ap5. Based on PG, the agent creates the local
task ΦL = Fap1 and the new task sequence is updated
to ΠtemΠpre = ap1ap4ap3ap2ap1 and Πtra = Πsuf =
ap4ap3ap2ap1 by Alg. 3 within 0.242s. Then, the agent will
go to ap1 and go back to ap4.

When going to ap3, the robot then detects a person (i.e.,
ap7), as shown in Fig. 3(c). Based on PG, the agent creates a
local task ΦL = Fap7∧Fap3∧ ((¬ap3)Uap7), which gives
rise to the new task sequence ΠtemΠpre = ap7ap3ap2ap1
and Πtra = Πsuf = ap4ap3ap2ap1 by Alg. 3 within 0.265s.
Then, the agent will go to ap7 first and then ap3. When
going to ap2, the backpack (i.e. ap6) is detected, as shown
in Fig. 3(d). Based on PG, the agent generates the local task
ΦL = Fap6∧Fap1∧Fap2∧((¬ap6)Uap2)∧((¬ap1)Uap6),
and the new task sequence ΠtemΠpre = ap2ap6ap1 and
Πtra = Πsuf = ap4ap3ap2ap1 can be obtained by Alg.
3 within 0.304s. Then, the agent will go to ap6, ap3, and
ap1 sequentially. During the execution of global task, the
agent detects three related objects and executes three local
tasks in total, without violating the global task specification.

VI. CONCLUSIONS

This work develops a real-time decision-making and mo-
tion planning framework, which allows the robot to follow
global task planned offline while autonomously generating an
LTL formula for the local temporary task when encountering
dynamic events. Future research will consider exploiting the
proposition graph for more complex tasks and environments.
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